
 
 

 

 
 
 
 

The development of quantum computers is one of the greatest engineering challenges of 

the 21st century. We as budding scientists have a duty to develop an understanding of this 

problem, no matter our eventual chosen discipline. This document serves as an effort to provide 

such an understanding of one particular solution to storing and manipulating quantum 

information, that is, by utilizing the properties of superconductive materials. Superconducting 

quantum bits exhibit quantum behavior on a macroscopic scale. They consist of circuits which 

act as highly controllable and predictable “artificial atoms” with simple, discrete energy levels 

that can be placed in superposition states. Unlike photonic or atomic qubits, superconducting 

qubits are readily scalable to the levels required to perform useful computations, as they can be 

produced by methods similar to those used in classical chip manufacturing.  

This primer assumes a basic understanding of both classical and quantum physics and 

computing, but we will rehash some things for the sake of literary coherency.   



What do we need to make a qubit?​  

Let’s begin as many a primer in quantum computing has done before: “information is 

physical”.1,2
 Whether it be chalk on a board, pixels on a screen, or waves of compressions in the 

air, something in the real world is there carrying the information. In computation, the basic unit 

of information is the bit, a binary logical state of zero or one. In a classical computer, a bit is 

stored as the presence (the one state) or absence (the zero state) of a few hundred thousand 

electrons on a capacitor in a Dynamic Random Access Memory (DRAM) circuit. Quantum 

physics tells us it is possible to create a quantum bit that is in a superposition of both the zero and 

one state, and that we can do that using the two lowest energy levels of a quantum mechanical 

object. As we all know, we can make a circuit mimic the motion of a particle by using an 

inductor and a capacitor to make an LC circuit. So, to make a qubit out of a circuit, all we need is 

to be able to make an LC resonator with a Hamiltonian which looks like a quantum harmonic 

oscillator and in which we can control the superposition state of the two lowest energy levels.  

 

 

 

 

 

 

 

Huzzah! Unfortunately, quantum physics also tells us it’s going to be difficult to do this. 

Please, restrain your huzzahs. Qubits must be as isolated from the world as possible in order to 

achieve long coherence times, because the second something observes them they will collapse 

 

Figure 1: A DRAM circuit  



into a classical state. But we also need to be able to rapidly change the qubit’s state and get 

accurate readouts when doing computations, both of which require strong coupling to exterior 

systems4. These two optimization parameters are clearly in direct conflict with each other.  

So how can we manage these constraints and make our quantum-mechanical resonator 

circuit? Well, we’ll need a little help from…  

Superconductors 

Superconductors are materials which when cooled to a critical point (usually near 

absolute zero), electrons of opposite spin will exchange phonons and form Cooper pairs, all of 

which move together as a unit with next to no resistance2,3. Cooling is needed because the 

thermal energy of the superconducting material needs to be low enough such that this coupling 

isn’t broken the second it forms. We don’t really need to get into the details of this phenomenon 

much beyond that, as I can say from firsthand experience that that will suck us down a deep 

rabbit hole.  

The reason we use hundreds of thousands of electrons in a DRAM circuit is that they 

have a tendency to leak electrons out into the world, flipping bits and producing errors. But if we 

try to resist noise problems in a qubit by making it larger, we increase the likelihood of errors 

occurring due to interaction with the outside world. As current moves in normal metals, things 

are constantly bumping into each other, destroying superpositions2. But by building our circuits 

with superconducting metal instead, we eliminate this problem.  

Now we can start to observe and utilize quantum mechanical behavior on a macroscopic 

scale. Much like how a crystal’s macroscopic structure arises from its atomic level structure, 

quantum mechanical behavior of Cooper pairs in a superconducting circuit leads to situations 

where we can observe macroscopic quantum behavior. So let’s build a superconducting LC 



circuit! The Hamiltonian of an LC circuit is  . In the 𝐻 = 1
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mechanical oscillator analogy, that last equality is taking the position coordinate taken to be φ, 

the “gauge invariant phase” across the inductor, and the conjugate momentum to be Q, the 

charge on the capacitor3,5. The mass analogue is then C and the spring constant is 1/L. We can 

make this quantum mechanical by using the commutation relation . 

This leaves us with the Hamiltonian . Great! Now this looks like the 𝐻 = 4𝐸
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potential well of a particle, where φ is the position. The excitation of the electrons is now 

described by a wave function dependent on φ, just like an atom! Let’s look at a graph of the 

potential (Figure 2). 

 

Uh oh. We have an issue. Recall, we need to be able to 

limit ourselves to the two lowest eigenstates. In order to do this, 

we need anharmonicity between the energy levels, that is, we 

need the frequencies of the transitions between them to be as 

different as possible, so we can maximize our control over the 

states. Remember, we want to limit ourselves to exciting the two 

lowest levels. The more different the frequencies which excite 

transitions are, the easier it is for us to apply a pulse of a 

frequency that will only excite changes between the lowest two 

states, and not any higher ones5. 

How do we get this? Look at the Hamiltonian. Clearly, the φ term is what produces this 

parabolic curve. We want that term to become nonlinear. To get that, we introduce a special 

 

Figure 2: Circuit diagram 
and plot of the Hamiltonian 
potential of an LC resonator 



electrical component which relies on superconductivity and the properties of quantum mechanics 

to produce a nonlinear inductance. 

 

Josephson Junction: What’s Your Function? 

​ A key component to building a superconducting qubit is the Josephson Junction, a 

nonlinear, nondisipative circuit element consisting of two superconductors with a thin layer of 

insulating material in between then, through which electrons (coupled in Cooper Pairs) can 

tunnel in a phenomenon called the Josephson effect3,5. Current flows through the junction 

according to the classical equations  IJ = I0 sin(δ) and  , where Φ0 = h/2e is the 𝑉 = Φ𝑜
2π
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superconducting flux quantum (2e, because the charge carriers are Cooper pairs), I0 is the critical 

current of the junction, and δ is the phase difference across the junction4,5. With a little 

differentiation and defining the Josephson induction by using the conventional , we 𝑉 = 𝐿
𝐽

𝑑𝐼
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Figure 3: Interrogation of a Josephson junction. 



can see that the Josephson Junction behaves as a nonlinear inductor, with its Josephson 

inductance described by the equation  4. ​ This gives rise to a new Hamiltonian 𝐿
𝐽
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capacitance and CJ the self-capacitance of the Josephson 

junction) and is the Josephson energy5. With this 𝐸
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change, the dynamics of the system is now governed by the ratio 

of EJ to EC .  As depicted in Figures 4 and 5, the potential has a 

sinusoidal shape, and thus anharmonicity between the energy 

levels. We can now limit ourselves to the computational 

subspace of the lowest two energy levels. There we go! 

Nonlinearity introduced. Qubit complete? 

​ Well… not really. Yes, our energy spectrum is no longer 

degenerate4. But we have some other problems to contend with. 

Let’s examine some superconducting qubit circuit architecture, 

to see what these are and how we can contend with them.  

Types of Superconducting Qubits: Charge, Phase, and Flux​  

 

Figure 5: The various qubit architectures, with their circuit diagrams, plots of their 
Hamiltonians (bold line) and ground state wavefunctions (thin line)  

 

Figure 4: The circuit diagram 
and plot of the Hamiltonian 
potential of a Josephson junction 
- Capacitor resonator  



There are three main types of superconducting qubit: the charge qubit, the phase qubit, 

and the flux qubit.  

One of the oldest and simplest forms of superconducting qubit is a charge qubit called the 

Cooper pair box. This circuit is basically the one we’ve been looking at, if not even simpler, 

consisting of only an electrode with a tiny capacitance connected to a reservoir by a Josephson 

junction6 . The capacitance of the electrode is small enough that adding a single Cooper pair 

takes a lot of energy5. The amount of energy required can be controlled with an adjustable bias 

voltage from the pulse gate. At a special bias 

voltage, we can create a superposition of there 

being a lot of Cooper pairs (~ a billion) or a lot 

plus one Cooper pairs on the electrode. This is 

similar to a DRAM circuit from earlier: 

information is stored in the form of charge on a 

capacitor, except here the charge difference is one 

Cooper pair tunneling coherently back and forth, 

connecting the energy levels of the a lot and a lot 

plus one states.  

The Cooper pair box may be the first superconducting qubit, but it’s also the worst. In 

this design, EJ ≤ EC, making these qubits extremely susceptible to noise, and giving them 

coherence times of only a few nanoseconds5. A variation on the Cooper pair box called the 

transmon (depicted in Figure 4) attempts to deal with these problems by attaching a large 

shunting capacitance to the circuit, making EJ >>EC. This makes the circuit much less susceptible 

to noise, but moderately reduces the anharmonicity between energy levels 2,5. The transmon 

 

Figure 6: A Cooper pair box 



behaves like an atom with atomic number of 1012, but its energy spectrum is simple at low 

energies. Due to its size, it has a huge dipole moment, and thus couples strongly with microwave 

signals for good control and readout2. If we add one extra junction, we’d still have a sinusoidal 

potential (we can eliminate one degree of freedom with something called the “fluxoid 

quantization condition”)5, but now one in which we can control the effective EJ with an external 

flux. This is called a split transmon. Unfortunately, the limited anharmonicity of the sinusoidal 

potential means that significant unwanted excitation of higher energy states can occur, putting a 

decent dent in the performance of gate operations5. But what if we could make that potential… 

wigglier? With the flux qubit, we can! By throwing an extra Josephson junction into 

 the circuit loop, we can make a circuit that looks like 

Figure 7. On the left, we have a Josephson junction, on the 

right, two identical junctions, larger than the left by a factor 

of γ.  By adding one more Josephson junction to the loop, we 

create the highly nonlinear curve shown in Figure 5b. The 

wonky potential curve is a result of adding quadratic potential 

of the shunt inductance with the Josephson junction’s cosine 

potential. In this design, the inductor makes it so that the 

charge variable is continuous (not integer valued, as in the 

charge qubit)3. Rather than having a superposition of one 

Cooper pair existing between two sides of a tunnel junction, 

we have a superposition of clockwise and counterclockwise 

current. For this reason, it is also known as a Persisting Current Flux Qubit5. These qubits have 

great anharmonicity, on the order of several GHz, much higher than that of a transmon, with only 

 

Figure 7: A flux qubit 

 

Figure 8: Fluxonium 



~200MHz. Additionally, the transition frequencies between their energy levels (100 MHz - 1 

GHz) are much lower than those in transmons (~5GHz), making them less susceptible to 

dielectric loss and improving coherence times7.  

An evolution of the flux qubit is fluxonium, a flux qubit with potentially hundreds of 

additional Josephson junctions which approximate a very large shunt inductor. This gives 

fluxonium very high anharmonicity and resistance to external flux3. Fluxonium has exhibited 

coherence times of more than a millisecond, and we’ll discuss more work related to it in the next 

section. 

​ The final flavor of superconducting qubit is the phase qubit. This is another inductively 

shunted design, set up such that transitioning between the ground and first excited state is 

difficult, but tunneling out of the third level becomes easier. This allows us to manipulate the 

qubit in the register of the lower two levels, apply pulse to readout, and, if it’s in the excited 

state, get a big voltage spike. This allows for very strong readout, but destroys coherency of 

nearby qubits, making this design difficult to scale for useful computations2. 

Coupling Qubits and Fluxonium-Transmon-Fluxonium Coupling  

Most useful quantum computations require at least two qubits with entanglement between 

them. With superconducting qubits, we usually create interactions between qubits in the form of 

electric and/or magnetic fields5. The hookup itself can be created using capacitors or inductors, 

although most two qubit gates rely on capacitive coupling7. Coupling is a critical part of turning 

individual qubits into quantum computers, but it’s also where a lot of challenges arise: as we’ve 

learned, stronger coupling often means more chance for quantum errors!  

Although fluxonium has appealing advantages over the transmon design, almost all 

advances in scaling up superconducting quantum processors have been with transmons. The 



smaller transition elements which give fluxonium such long coherence times also make its 

coupling weaker than that of a transmon. Additionally, capacitive coupling leads to an always on 

entangling rate (ZZ) – a type of constant error arising from higher transition states of qubits 

acting on the computational states.7 

A quite recent development in coupling methodology is the fluxonium-transmon- 

fluxonium circuit, where two fluxonium qubits are coupled using a transmon. Strong capacitive 

couplings hybridize the first higher energy transition 

(1 → 2) of the fluxonium qubits with the lower 

transition (0 → 1) of the transmon, but the 

computational states themselves remain relatively 

separated. Thus, the qubits can perform well as both 

single and two qubit gates, with average CZ gate 

fidelities of 99.922 ± 0.009%. This coupling also 

reduces ZZ to kHz levels, and the system has 

exhibited coherence times of up to a millisecond7. 

This design opens the door to scaling up fluxonium-based quantum devices, and thus to even 

more innovation in super- conducting quantum computing. 

Superconducting qubits — and YOU! 

I hope you are now convinced that superconducting circuits are an extremely promising 

method for creating quantum computers. Although they exhibit lower coherence times than other 

methods, they are catching up, and the low dissipation of their materials means that long 

coherence times are possible2. They have great readout and controllability due to the strong 

coupling capabilities granted by their macroscopic size, and researchers are making big progress 

towards producing bigger and better quantum devices based on them. There is still a long way to 

 

Figure 9: Fluxonium-Transmon-Fluxonium 
diagram. c) illustrates the function of the CZ gate. 



go before we’ll be able to make something really useful, and there are problems we haven’t even 

discussed yet in this primer (for example, tiny manufacturing imperfections in the electronics can 

contribute significantly to errors)1.  

This is where you, the peers and friends for whom I am writing this, come in. This field is 

so young, and we are in a historical position where we may very well be the generation to take 

this technology from cutting-edge research to working machines. You! Yes, you, dear reader, 

could be a part of this effort. And even if not (I for one am more interested in fusion energy 

technologies), the technology is worth understanding. As Schoolhouse Rock so eloquently put it: 

“It’s great to learn, cause knowledge is power”.  
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Curiously quantum-y fortune from my dinner.  


