Dark Matter

Engineering the search for the elusive particles composing the universe T. Mollano '25.5, T. N. Tsekerides '26, Prof. G. K. Giovanetti

How do you detect it?

Evidence for this "dark matter" includes the large scale structure of the universe and the rotation curves of spiral galaxies.

However, we may be able to directly detect interactions of dark mat-

ter with liquid noble gasses using a

time projection chamber (TPC)

Most of the universe appears to me made of matter, which doesn't interact with light or E&M fields.

What is DarkSide-20k?

DarkSide-20k is a massive liquid argon TPC under the Gran Sasso mountain in Italy. Filled with 50 tons of argon, it will allow for large exposures that will either detect dark matter or eliminate a large paramter space of possible candidates.

What are we doing at Williams?

In order to broaden DarkSide's search into lower mass models, we must understand the nature of the background noise found at high sensitivities. To do so, we are creating our very own LAr TPC!

Improving Diagnostic Tools

We've created a number of sensing and control systems, which are fed into a Raspberry Pi, allowing us to centrally operate the whole system. Data is also sent to a server for remote storage and access.

Argen Mit Cooper Argen Mit Cooper Series Pressure 2019 Series Pressure 2019 Series Pressure 2019 Series Pressure 2019 Series Pressure 2019 Series Pressure 2019 Series Pressure 2019 Series Series Visions National Mit Series Visions								Lake-Shore
0000 00000 0000		Argan MEC Output			Nitrogen MFC Ou	put		Bitropes M
Subset in 2000 in 2000 is 2000		8.00	60025		1	AAAN.	101	
1 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.000 0.000 0.000 0.000 0.000 1 0.000 0.0000 0.0000 0.0000 <td></td> <td></td> <td>\$ 1000</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>www</td> <td>. AAAA</td> <td>V V</td> <td></td>			\$ 1000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	www	. AAAA	V V	
All Property Contraction 20.06 All Property Contraction Contraction Contraction Bit States	197339 197400	Norma Senta Desentation	10. 	10.2030 00.24.00	Total Sector Sector Sector	10.20.30 12.2	in pan	
Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction Image: North Construction <td< td=""><td></td><td>20.58</td><td>805</td><td></td><td>Depa Deport Pres</td><td>2014</td><td>0.00</td><td></td></td<>		20.58	805		Depa Deport Pres	2014	0.00	
Horizon Horizon MCC Sequence Visuality Horizon MCC MCC MCC MCC MCC MCC MCC MCC MCC MC			ž 1000	-			2.9	
Netrogen MPC Sequerk Voltage 0.00 102338 102400 10240 10240 0.00 102338 102400 10240 10240 10240 10240 102338 10240 10240 10240 10240 10240 10240 102338 10240 10240 10240 10240 10240 10240 10240 102338 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 10240 1010 10240 10240 10240 10240 10240 10240 10240 1010 10240 10240 10240 10240 10240 10240 10240 1010 10240	10.21.10 23.24.00	10 24 50 10 25 40 10 26 30 10 27 30 10 28 3 Tena	e) (19	18 29 30 10 3 4 00	1224.50 1825.40 Time	293430 i02	20 10.0010	
Image:	Táb	ogen MFC Setpoint Vuhage 0.00			Argon MFC Selpoint \	Astage	0.00	
100000 1000000 100000000 100000000 1000000000 1000000000 1000000000 1000000000 10000000000 1000000000000000000000000000000000000					_	_		
Normalization Normalization 1 1 <	102330 102400	20 24 50 20 25 40 20 28 30 36 27 28 38 28 3		\$\$73.52 IE 24.96	112430 112541	M2636 882	29 382430	
plota > Influencia intervent		Temperature 1			Temperature 2		17.64	
Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>		425.00	2.8					
plore > Influence 20 = - II == OutTre © influence =								
plora > Influedo = 2 - III	20.2238 20.34.00	15 28 56 10 25 48 10 38 30 10 27 28 10 28 1		10 22 50 10 24 96	10 24 50 10 25 40	10.25.34 M.J	20 14/2/8.30	
plora > Influedo =2	20,22,32 10,24,00	15-24-96 10-25-41 10-34.30 10-17-10 10-24-1		10 21 10 10 34 96	11.24.50 10.25.40	12.25.34 34.3	20 3428.35	
III > Outine > influid: > I Split Add > > > > ands	387238 102400	15-24-56 18-25-48 10-34.30 10-37-38 18-34 1		19 23 50 10 34 96	18.24.50 18.29.40	123.8 NJ	20 342434	
ends CRECOP av Line(\$_mineral) x fit(nul) x + Induzoral Contentil Content) Induzoral Content C	202238 303400	192456 182548 193430 197739 19774		98 EX 80 10.34 QA	822450 822240	10.28.36 36.2	20 BH 20 16	
Index.com Conternant Concentration Second rig Lonis Lonis Lonis Second rig Lonis Lonis Second rig V connection Lonis Aurilian section Lonis Hadd query Order y history Course Ouery history Ouery inspector Interior Lonis Lonis	plone = Influxio =	1924-56 1925-48 1936.30 1927.29 1929.1 42 - 10 -= Outfine 🔗 inflands		38 E 80 10.34 90	88.24.50 89.29.45	10.20.20 30.2	20 H / H / H / H / H / H / H / H / H / H	lit Adu - O -
Lons Lond AB Time series - ALRA Menning action v connection index + Add query O Query history © Query insolucion index	202228 202400	152455 162546 1039,30 1027,20 1627,0 4 10 -= Outine @influx.lt cressifiers time(&_mtext)	× (1(pat) ×	10 EL 10	38.2450 BR29.49	10.28.34 36.3	in main I Spi	lit Add ~ O ~
Lons DAMATAB Time series - ALAS Naming outlen z connection unces tration	2022-38 30-34-00	192456 (192348 1994,00 (1922)) (1924) 	т м (а (а.1) ж ансы зу м.	992040 102490 •	11.119 JUZI 6	10.28.34	20 10 20 10 11 Spi	lit Add - O -
ar carnedian + Add query D Query history C Query inspector urces Iration	plora > Influence :	152456 (112346 1074,00 1072,00 11294) 	× fir(n=1) × Cintoent ay inte Sector (gotte	172342 102496	112410 112740 112410	12.21.24 3 30.2	20 84.49.36 	iit 🛛 Add 🛌 🗐 🏵 🗵
ration	plone > Influence : ands	152456 312346 1635.00 1637.20 1677.0 *2 III r= Outine ② influedt: CEDUP SY time(&_mirecel) 1062.2000 (cottornel) CMD (cottornel) 1060661.AB Time series -	x fit (n-1) x quuen ay ita s.r.m (outo s.r.m (outo	19 CD 101 (0.24 96	113410 (112)44 4	12.12. M MJ	20 10.00 M	lit Adu - O -
	plone = Influence = ands Lone = v connection	152456 112348 1035.30 10228 1274	x In (a.i) x GREEN AV IN. S. MI (out) A.IoS Marin IV © Query in	1902 00: 002496	4	923 H	10 10 20 10 11 Spi	lit Adu - O -

Argon Condensation System

We also constructed a cryogenic camera system for monitoring argon condensation quality.

This work supported by the National Science Foundation and the Research Corporation for Scientific Advancement, and Viewers Like You. Thank you!